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Abstract 

This paper develops a method to tune fuzzy controllers using numerical optimization. The 

main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve 

global performance requirements. Furthermore, this approach allows design constraints to 

be implemented during the tuning process. The method tunes the controller by 

parameterizing the membership functions for error, change-in-error and control output. 

The resulting parameters form a design vector which is iteratively changed to minimize an 

objective function. The minimal objective function results in an optimal performance of the 

system. A spacecraft mounted science instrument line-of-sight pointing control is used to 

demonstrate results. 
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Introduction 

Fuzzy logic control extends fuzzy set theory to the control of processes [l-51. A fuzzy 

logic controller (FLC) is a fuzzy expert system which uses approximate reasoning. To 

date, almost all FLCs use only “if-then” rules. The basic scheme of using FLC for 

feedback error control is to generate a control input based upon error information resulting 

from feedback [5-7, 21. The control input to the system is a desired or referenced input. 

Conceptually, FLC is similar to traditional feedback control except that the fuzzy controller 

requires the user to formulate membership functions for various fuzzy sets, develop rules 

that map input conditions to responses using fuzzy sets, and select fuzzification and 

defuzzification techniques for a small number of options. 

The basic architecture for fuzzy logic control is depicted in Fig. 1. As shown in Fig. 1, 

outputs from the controlled system are inputs to a fuzzification process. This fuzzification 

process maps the inputs to membership in fuzzy sets. Fuzzification relates vague and 

imprecise inputs to approximate reasoning. Following the fuzzification process is decision 

making logic where control action is predicated from rules of inference. The inference 

outputs are fuzzy. A single crisp control output is produced in a defuzzification process. 

Control is predicated upon a measured error and change-in-error. As an example, if error 

is positive and small, and change-in-error is zero then control output is negative and small. 

Ref. 5 gives a detailed description of the application of fuzzy logic control. 

The advantage of using fuzzy controllers is that they have been shown to produce very 

good results in cases where the mathematical description of the system being controlled 
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may not be readily available or the description may be of questionable fidelity [8-131. 

Despite the use of simple fuzzy logic control, there are specific drawbacks [12, 141 due to 

tuning the controllers to meet some performance objective. 

Methods for tuning fuzzy controllers include using neural networks, fuzzy self-organizing 

control (SOC), genetic algorithms, and human knowledge. The SOC is essentially a 

decision maker predicated upon performance feedback. The SOC is capable of generating 

and modifying the control rules based upon an evaluation of their performance. The SOC 

is composed of three elements: performance index evaluation, credit assignment, and rule 

modification. The performance index and credit assignment require a priori knowledge of 

desired controller input-output mapping. Daley and Gill [ 12,141 have demonstrated the use 

of SOC for the attitude control of a spacecraft. 

Neural Networks have also been used because of their learning capabilities for system 

identification and/or tuning. However, simultaneous tuning of membership functions and 

identification of inference rules is difficult. Rules identified by networks are difficult to 

understand. Furthermore, training neural networks is computationally time consuming. 

Genetic algorithms are a form of directed random search. To implement genetic 

algorithms, the fuzzy sets must be parameterize discretely. The discrete set forms an initial 

population for the genetic algorithm. The population evolves to produce new, but 

hopefully better design of the fuzzy sets. Human knowledge can be used to tune the 

controllers. However, such knowledge must be developed into a reliable linguistic model 

of an operator’s strategy. Another consideration for using user knowledge is that the 

system processes may change beyond the operator’s realm of experience. 
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This paper presents a new approach for tuning fuzzy logic controllers using numerical 

optimization. The main attribute of this approach is that it allows fuby  logic controllers to 

be tuned to achieve global performance requirements. Furthermore, this approach allows 

design constraints to be implemented during the tuning process. The approach consists of 

specifying the desired outcome of tuning a fuzzy controller (e&, system time response) as 

minimization of an objective function. The control design methodology is applied to a 

spacecraft mounted science instrument (payload) which rotates about a drive shaft. The 

design goal is to have a bounded response amplitude while having the instrument meet 

mission pointing requirements. Fuzzy logic control is used as a means to maintain either a 

constant slew rate or fixed line-of-sight pointing for the payload subjected to vibration due 

to multiple disturbance sources. 

Design constraints such as physical limitations in hardware or software such as controller 

torque output (magnitude vs. frequency), measurement sampling rate, measurement 

sampling range (Le., limits), etc. can be included in the optimization process and fuzzy 

logic controller development. Fuzzy membership support limits are naturally malleable to 

some system specifications such as error measurement range and control output. If prior 

knowledge of the controller's maximum output and measurement range (error and error 

rate) is available, a fuzzy logic controller can be tuned by having the control support limit 

as the controller's output maximum value. The error support limitation could be either the 

physical measurement limit or it could reflect a bound of measurement within a given 

regime of operation. paper allows for 

constraints to be included in the tuning process either in the constraint equations or with the 

upper and lower bounds on the design vector. 

The design methodology presented in this 
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Optimization Strategy - General 

An objective function is prescribed such that, as it is reduced in value, the overall 

performance improves. Furthermore, the objective must be explicitly or implicitly 

dependent upon a set of design parameters. Design parameters are given such that they can 

be varied to change the overall performance (design objective). Thus, the design objective 

is to minimize 

subject to 

F ( a )  

Gj(a) 5 0 j =  I,m 

and 

a[, 5 ai 5 au, i = 1,n 

( 2) 

whereF(a) is an objective function which, when minimized, will result in optimum 

performance of the system. The vector, a,  contains n system parameters which are varied 

through the iterative optimization process. Gj(a) is the jth constraint on the design 

parameters. There are m constraints. Each design parameter, ai , is bounded by upper 

and lower limits, aIi and aUi , respectively. 

A flowchart of the optimization procedure is shown in Fig. 2. The procedure is iterative. 

The first iteration requires the user to develop an optimization objective, constraint 

equations, and bounds for the elements of the design vector. In the first iteration, the 

objective function is evaluated. If the objective value is less than some desired value, the 

process is complete. If the objective value is greater than some desired value, the 
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optimization process searches for new values for the elements of the design vector, a, 

which will reduce the value of the objective function and satisfy the constraint equations. 

The permissible values for elements of a are those which are within the limits of the upper 

and lower bounds of a. After the constraints are satisfied, the design vector is used to 

produce an objective function evaluation which is then compared to the desired objective 

value. The variation of the objective with respect to the change in the design vector is used 

to develop the next vector. Iteration of the optimization process is continued until some 

desirable value of F(a)  is achieved or the number of iterations has reached some 

prescribed maximum. 

Controlled Payload 

The controlled payload mounted on the spacecraft is shown in Fig. 3. 

equation of motion is 

The payload 

I ~ = Q ~ + u  
(3) 

Payload rotation about the drive shaft is given by 8. The spacecraft has two payloads. The 

disturbing payload is open-loop. The science instrument is the closed-loop controlled 

payload. The control torque, u, is the output from the defuzzification step of the fuzzy 

logic controller. The payload inertia, I ,  is 3.5 lb-ft2. Other external torques such as 

those due to damping are included in the term, Qe. In Fig. 4 is shown the pointing control 

for the science instrument. 

instrument’s elevation with respect to the spacecraft and the spacecraft’s attitude. 

The line-of-sight pointing is the combination of the 
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Fuzzy Logic Control 

In Fig. 5 is shown a parameterized fuzzy membership function. The same membership 

functions are used for the error, change-in-error, and control output. The fuzzy term sets 

are positive big, (PB), positive small, (PS), zero, ( Z ) ,  negative small, (NS), and 

negative big, (NB). These sets are symmetric about zero and are bounded by a parameter, 

a,, which defines minimum and maximum support limits. Positive small, (ps), and 

negative small, (NS), singletons (membership has a grade of 1.0) are located on the 

universe of dkcourse by a2. The base for the triangular membership function zero, ( z ) ,  
is defined by a,; negative small, (NS), and positive small, (PSI, bases are defined by 

a4; and, the negative big, (NB), and positive big, (PB), bases are defined by a,. The 

initial membership functions (first optimization step) have an overlap at grade 0.65. This 

overlap gives all support elements membership in two term sets unless the support element 

has membership grade of 1.0 in any term set. Because of the overlap, the control gradient 

with respect to the error and change-in-error is continuous, monotonic, and never zero 

[13]. The advantage this fuzzy membership offers is the effect that the membership 

functions have when the support elements are near zero. Unless the element is absolutely 

zero, the elements have nonzero grades on the respective side of zero. The result is a 

smooth approach to zero for process output as the support elements approach zero. The 

membership functions depicted in Fig. 5 are used for the payload error, change-in-error 

and control. The control rule matrix used is shown in Fig. 6. Each element of the matrix 

is numbered and corresponds to a rule. For example, Rule 7 states that if error is PS and 

change-in-error is NS then the control output should be 2. 
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Optimization Strategy for Controller Design 

In this paper, the objective is derived from the system response. The optimization design 

objective, F ( a )  , is to minimize the aggregate square of error between a measured position 

and commanded position. Thus 

where x(a,t) is the measured position at time t and xcom is the commanded position. The 

design vector, a, has three sets of parameters, al, # * e ,  a5, for a total of 15 elements. 

Each membership function uses the following constraint to maintain the ordering of the set 

terms: 

G,(a) = 1 .25a2 - a, 

The following constraints assure continuous mapping from error and change-in-error to the 

control output. The constraints also assure overlap of adjacent membership functions. 

Because of the overlap, the control gradient with respect to the error and change-in-error is 

continuous, monotonic, and never zero. 
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G2(a) = (a, - as) * 1.10 - (a2 + a,) 

G3(c1) = -a3 + (az - ag)  * 1.10 

A constraint is violated if 

G j ( a )  =- 0 

The flowchart for tuning the fuzzy controller is shown in Fig. 7. The general optimization 

procedure mentioned earlier is uesd. However, the design vector is used to generate the 

fuzzy logic membership functions. The system produces another response with the 

member functions. The new response is used to generate a new objective function 

evaluation. 

The instrument fuzzy controller has three modes of operation: slew maneuvers, disturbance 

rejection (impulse and periodic vibration) and trajectory tracking. To demonstrate the 

methodology, the instrument controller will be tuned to perform slew maneuvers and 

disturbance rejection using the same initial design parameters. The initial design parameters 

were chosen such that they produce unsatisfactory system response. Successive iterations 

of the optimization process will reduce the objective function. The iterations terminate 

when a set of design parameters, a,  is generated which will produce a desired objective, 

F ( a ) .  
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Numerical optimization was performed using the Automated Design Synthesis (ADS) 

software [15]. The method of feasible directions for constrained minimization with 

sequential quadratic programming is used for optimization. In Figs. 8 through 10 are the 

initial and final membership functions for error, change-in-error, and control that were 

generated while tuning the instrument controller for a 0.5 radian slew maneuver. The 

membership functions for all term sets changed during the design process. However, 

changes for zero, 2, were not as pronounced. The support limits for error, change-in- 

error and control changed from 0.1, 0.01, 0.01 to 0.12, 0.037, 0.064, respectively. An 

iteration history of the normalized objective (normalized to the objective evaluated during 

the first iteration) is shown in Fig. 11. The objective function was reduced to 1% of that 

evaluated for the first iteration after 60 iterations. The final (tuned) fuzzy controller 

produced a response which achieved the desired position in 23 sec. without overshoot, as 

shown in Fig. 12. After 40 sec., the response using the initial controller did not reach the 

desired commanded position of 0.5 rad. 

In Figs. 13 and 14, are shown the results of tuning the instrument fuzzy controller while 

the instrument is commanded to maintain a position of 0.0 rad. in the presence of a periodic 

disturbance (amplitude = 0.Olft-lb and frequency = 0.25 Hz). The objective function, 

F(a) ,  is reduced to 1% of the initial function after 27 iteration steps (Fig. 13). In Fig. 14 

is shown the response for the initial and final controllers. The initial response amplitude is 

approximately 0.005 rad. The final response amplitude has' been reduced to 

approximately 0.00005 rad. 
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Tracking Controller Development 

The results presented thus far have shown the capability of tuning a fuzzy controller by 

parameterizing the membership functions and then using the parameters in a numerical 

optimization algorithm. The same initial membership functions were used in all cases. 

Reduction to 1% of initial objective function was used as the criterion for terminating the 

optimization process. In all cases, the final responses were satisfactory. The initial 

membership functions demonstrated the effectiveness of using numerical optimization to 

tune the controllers. The following discussion demonstrates that the approach can be used 

to enhance the tuning of controllers which already exhibit satisfactory performance. 

A common need of many space-based payloads is the requirement to track a target, 

reposition, and track another target. Such retargeting occurs when communication 

antennae track relay satellites. The instrument controller was tuned by parametrically 

varying support limits for error, change-in-error, and, control output. The final design, 

arrived at in Ref. 16, is used as an initial design in the optimization process. The 

optimization design objective, F ( a ) ,  is to minimize the aggregate square of error between a 

measured trajectory and desired trajectory. Thus 

where xd(t )  is the desired trajectory. After 71 design iterations, the objective function is 

reduced to 1% of its initial value. In Fig. 15a is shown the commanded elevation for the 
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instrument to track. The results of using the initial and final designs are shown in Fig. 

15b. The initial design has a tracking error greater than 0.25 rad. The final design of the 

fuzzy controller significantly tracks its commanded position better with a tracking error 

less than 0.01 rad. 

Concluding Remarks 

This paper has presented the development and viability of a method to tune fuzzy 

controllers using numerical optimization. A spacecraft science instrument pointing control 

model was used to demonstrate the application of the methodology. The optimization 

approach allows a designer to tune membership functions for all linguistic variables to 

achieve global performance. Furthermore, this approach allows design constraints to be 

implemented during the tuning process. 

The optimization approach consists of specifying the desired outcome of tuning a fuzzy 

controller (e.g., system time response) as minimization of an objective function. The 

objective function is prescribed such that, as it is reduced in value, the overall performance 

improves. Furthermore, the objective must be explicitly or implicitly dependent upon a set 

of design parameters. Design parameters are given such that they can be varied to change 

the overall performance (design objective). 

The controller was tuned by parameterizing the membership functions. The resulting 

parameters formed a design vector which was used in the iterative numerical optimization 

process. Optimization objectives used included minimizing the aggregate square of error 

between a measured position and commanded position; minimizing the aggregate absolute 
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error between a measured position and commanded position; and minimizing the aggregate 

square of error between a measured trajectory and desired trajectory. In the design cases 

presented, the objective was reduced to 1% of its initial value within 80 optimization 

iterations. 

Instrument design results included tuning the controller for 0.5 rad slew maneuver, 

disturbance rejection (impulse and periodic), and trajectory following. In tuning for the 

slew maneuver, the support limits for error, change-in-error, and control changed from 

0.1, 0.01, 0.01, to 0.12, 0.037, 0.064, respectively. Using the final design, the 

instrument completed the maneuver in 23 sec. without overshoot. The final instrument 

controller design tuned for disturbance rejection when the instrument was subjected to a 

periodic disturbance resulted in a final response which reduced to 0.00005 rad (initial 

response was 0.005 rad). When subjected to unit impulse, the final instrument design was 

stable with a settling time of 21 sec. The final design used for tracking a trajectory reduced 

the tracking error to 0.01 rad (initial tracking error was 0.25 rad). 
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Fig. 14 Payload response to a periodic disturbance (0.01 ft-lb., 0.25 Hz ) using initial and 
final membership functions. 
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